
Software-Enabled Flash™
Technology:
Understanding the Reference Flash
Translation Layer in the SDK

TECHNICAL BRIEF

Technical Brief | Software-Enabled Flash Technology: Understanding the Reference Flash Translation Layer in the SDK | September 2022 | Rev. 1.0

2

Software-Enabled Flash (SEF) technology is a combination of purpose-built hardware and an open source
software stack (Figure 1) that provides developers with unprecedented application control over flash memory
behaviors. Built for cloud-scale applications, it exposes the parallelism and digital nature of flash memory to
applications while abstracting the low-level operations of flash memory. Tenant isolation, queueing control
down to the individual Input/Output (I/O) operation, and copy offload are now possible within applications
that use this technology.

The Software-Enabled Flash open source project, under The Linux Foundation®, is responsible for the host
software stack that make this technology possible. It has already released and documented the Application
Programming Interface (API) that serves as a wrapper around the low-level SEF device commands.

To make it even easier for applications to work with this new programming paradigm, the Software-Enabled
Flash project is developing a Software Development Kit (SDK) that is intended to provide a higher-level set of
application-focused features.

The SDK contains four major components:

1. Command-Line Interface (CLI) tool: (used to manage the complete life cycle of a SEF device)
2. Flexible I/O1 (FIO) test tool: (used to explore different isolation and latency configurations without requiring a ported application)
3. Reference virtual I/O device driver: (works with the open source QEMU2 virtualization system enabling developers to use SEF technology in

their virtualized applications without needing to change any application code)
4. Reference Flash Translation Layer (FTL): (provides a sample implementation of a standard block interface to applications running on a SEF

device)

The focus of this tech brief is on the reference FTL portion of the SDK.

The Reference FTL
The SDK provides an open source licensed reference FTL to accelerate user development of application-customized FTLs. Even though it is a reference
codebase, it is a fully functional sample FTL. It stores application data on a user-created Quality of Service Domain (Figure 2), allowing all the isolation and
queueing control of the raw SEF API. It provides such features as placement IDs and hardware offloaded garbage collection, as well as SEF features such as
I/O queueing control and isolation. Developers can use this code to prototype their own applications and replace individual components as they are created.

Figure 2: Example of SEF Quality of Service Domains configuration
(Used with permission from KIOXIA America, Inc.)

Documentation is provided in both the SDK header files as well as a separate PDF which includes the general theory of operation and explanations about
how individual components work together. The guiding principles for the FTL include:

• Support all of the underlying SEF features such as isolation, queueing control and copy offload
• Protect data and ensure recovery after power loss
• Be written in straight C with well documented, modular code

Figure 1: SEF Software Stack
(Used with permission from KIOXIA America, Inc.)

Technical Brief | Software-Enabled Flash Technology: Understanding the Reference Flash Translation Layer in the SDK | September 2022 | Rev. 1.0

3

Reference FTL Components
The reference FTL is constructed of multiple functional C-language units, each with their own defined
API. This is intended to allow developers to easily replace individual portions while preserving
the rest of the reference FTL stack. For example, a custom garbage collection algorithm could be
implemented by a developer without requiring a new look up table or persistence layer.

The six components of the reference FTL include (Figure 3):

• SEF Block Layer
• Look Up Table
• Super Block Management
• Garbage Collection
• Metadata Persistence
• Instrumentation

More details covering each of these components now follows. For actual SDK interfaces, please refer
to the SDK documentation and headers.

SEF Block Layer
The SEF Block Layer provides the interface between all applications and the reference FTL. This is an asynchronous-based API which allows multiple read,
write or trim operations to occur. It takes a SEFMultiContext structure (Figure 4) that defines the I/O operation to perform and contains a callback to be
executed on completion.

struct SEFMultiContext

{

 SEFBlockHandle blockHandle;

 /**< SEF Block handle to be used for access to the block instance */

 struct SEFMultiContext *parent;

 /**< A pointer to an instance of SEFMultiContext used for compound operations */

 void (*completion)(struct SEFMultiContext *);

 /**< The function that is called when the transaction is completed */

 void *arg; /**< A pointer that can be used by caller for any reason */

 uint64_t lba; /**< Logical block address */

 uint32_t lbc; /**< Logical block count */

 enum SEFBlockIOType ioType; /**< The I/O Type that needs to be performed */

 uint8_t flags; /**< I/O flags enum SEFBlockIOFlags */

 char reserved[2];

 struct iovec *iov; /**< A pointer to the scatter/gather list */

 int iovcnt; /**< The number of elements in the scatter/gather list */

uint32_t iovOffset; /**< Starting byte offset into iov array */

struct SEFPlacementID placementID; /**< Placement ID for writes */

atomic_int transferred;

 /**< Counter denoting number of bytes transferred for the transaction */

 atomic_int count; /**< Reference count, I/O is completed -> 0 */

 atomic_int error; /**< First error for the transaction */

 int cancel; /**< Set to indicate cancel in progress */

};

Figure 4: SEFMultiContext structure within the reference FTL Block Layer

Important Note: This SEFMultiContext I/O request structure uses the standard iovec structure3 to support scatter-gather lists for reading or writing to host
memory. It also supports placement IDs for write operations. The same structure is used for read, write and trim operations.

Figure 3: Reference FTL components
(Used with permission from KIOXIA America, Inc.)

Technical Brief | Software-Enabled Flash Technology: Understanding the Reference Flash Translation Layer in the SDK | September 2022 | Rev. 1.0

4

Look Up Table
The Look Up Table is a critical piece of any FTL and translates between Logical Block Addresses (LBAs) to the underlying flash Physical Addresses used by
the SEF API. The full translation table for the Quality-of-Service Domain used is kept in host memory and requires 8 bytes for every 4,096 bytes of flash
memory, or 2 gigabytes4 (GB) of host RAM per terabyte4 (TB) of flash memory. Developers can build their own look up table modules that, for example, only
cache a portion of the table in host memory, or implements different/variable entry granularity.

Super Block Management
Super blocks5 store all data in a Quality of Service Domain. While the SEF hardware unit is responsible
for managing super blocks (such as ensuring even wear or allocating a defined virtual device), the
FTL keeps a copy of all the super block states in host RAM. This capability enhances performance
by avoiding a round-trip from the storage drive whenever a super block state needs to be accessed.

Super blocks in the FTL are tracked (Figure 5). These super block states correspond directly with
those states in the SEF hardware unit. The internal representation allows the FTL to ensure the
integrity of the on-flash data while multiple operations are underway. For example, a super block
with read operations in flight will be marked in RAM so that it is not erased as a result of a garbage
collection operation.

Garbage Collection
Garbage Collection6 (GC) is completely under host control with the reference FTL. It is normally run
when flash memory is under write pressure, such as when the number of free super blocks that need
to be written falls below a user-defined critical value (as is common with flash overprovisioning).
However, under an explicit application request, GC can be initiated or deferred. The included GC
module within the reference FTL runs asynchronously to the main FTL operation, and executes a
pseudo-code loop (Figure 6):

while (still work to do)

{

 Get list of collectable superblocks (ones w/invalid data)

 Sort by # of invalid ADUs (~sectors)

 Determine placement id with most invalid data

 Allocate destination super blocks

 Send nameless copy bitmaps (from Super Block Tracking)

 Perform copy in-drive, no host CPU or DRAM or PCIe bus bandwidth

 Update Flash Translation with new mappings

 Discard read-out super blocks

}

Figure 6: Pseudo-code loop executed by the GC module in the reference FTL

The GC module determines the blocks that need to be moved, but also relies on the SEF copy offload capability to actually move the data. In this instance,
neither the PCIe® bandwidth or DRAM bandwidth is used, nor is the host CPU involved other than to identify the blocks to move and to send a request to
the SEF hardware unit.

Metadata Persistence
The Persistence module manages metadata persistence for the reference FTL. This includes data such as the look up table (and changes) and the state of
different super blocks. It utilizes the standard SEF super blocks to store its data, along with a SEF feature called Root Pointers which enables the reference
FTL to quickly find the latest copy of the metadata on start up.

Figure 5: FTL super block states and transitions
(Used with permission from KIOXIA America, Inc.)

Technical Brief | Software-Enabled Flash Technology: Understanding the Reference Flash Translation Layer in the SDK | September 2022 | Rev. 1.0

5

Instrumentation
Since I/O operations to the SEF hardware unit do not travel the same path as those operations of standard block I/O, they cannot be tracked using existing
system monitoring tools. To overcome this limitation, an instrumentation block permeates the entire reference FTL stack, and via this instrumentation layer,
it is possible to track block I/O operations to the FTL, as well as lower level SEF operations such as super block allocations or physical address requests.

This Instrumentation layer can be dynamically enabled and disabled enabling developers to turn monitoring on and off as desired while an application
runs. If monitoring is not required (i.e., in a fully-tested, deployed application), then no additional memory and CPU resources are used. When monitoring is
enabled through a UNIX® socket, the Instrumentation layer can report data in human-readable

A Reference FTL Built for Developers
The SDK includes a reference FTL but as shown in this technical brief, “reference” does not mean “bare bones.” It implements a fully functional FTL with
support for all the SEF capabilities of the raw device. This brief only scratches the surface of the reference FTL. Since the code is fully open sourced,
developers should dig into the header files and implementation details to better understand its operation as well as tuning it for specific application
workloads.

For more information on the Software-Enabled Flash SDK and the entire Software-Enabled Flash technology ecosystem, go to
https://softwareenabledflash.org where whitepapers, videos and infographics are available. Source code for the project is hosted on the GitHub® site -
https://github.com/softwareenabledflash.

Notes:

1 Flexible I/O (FIO) is a free and open source disk I/O tool used both for benchmark and stress/hardware verification. The software displays a variety of I/O performance results, including complete I/O latencies and percentiles.

2 QEMU is an acronym for Quick Emulator and defined as a software module that supports full virtualization by providing emulation of various hardware devices. QEMU is a component of the hypervisor platform.

3 The iovec structure defines one vector element. Normally, this structure is used as an array of multiple elements. For each transfer element, the pointer member iov_base points to a buffer that is receiving data for ‘readv’ or is transmitting data for
‘writev’. The member iov_len in each case determines the maximum receive length and the actual write length, respectively.

4 Definition of capacity – Software-Enabled Flash project contributing member, KIOXIA Corporation defines a kilobyte (KB) as 1,000 bytes, a megabyte (MB) as 1,000,000 bytes, a gigabyte (GB) as 1,000,000,000 bytes, a terabyte (TB) as
1,000,000,000,000 bytes, and a petabyte (PB) as 1,000,000,000,000,000 bytes. A computer operating system, however, reports storage capacity using powers of 2 for the definition of 1Gbit = 230 bits = 1,073,741,824 bits, 1GB = 230 bytes =
1,073,741,824 bytes, 1TB = 240 bytes = 1,099,511,627,776 bytes, and 1PB = 250 bytes = 1,125,899,906,842,624 bytes and therefore shows less storage capacity. Available storage capacity (including examples of various media files) will vary based on file
size, formatting, settings, software and operating system, and/or pre-installed software applications, or media content. Actual formatted capacity may vary.

5 A super block is a group of the same physical block addresses that are striped across multiple dies. Each die has thousands of blocks and a virtual device may have anywhere from one to hundreds of dies.

6 Garbage collection (GC) is a memory recovery feature built into programming languages that automatically frees up memory space that has been allocated to data that is no longer needed by the application.

Trademarks:

GitHub is a registered trademark of GitHub, Inc. JavaScript is a registered trademark of Oracle and/or its affiliates. The Linux Foundation and Software-Enabled Flash are trademarks or registered trademarks of The Linux Foundation in the United
States and/or other countries. PCIe is a registered trademark of PCI-SIG. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Ltd. All other company names, product names and
service names may be trademarks or registered trademarks of their respective companies.

Disclaimers:

© 2022 Software-Enabled Flash Project a Series of LF Projects, LLC. The Software-Enabled Flash Project is an open source community focused on Software-Enabled Flash (SEF) technology which supports an emerging paradigm by fundamentally
redefining the relationship between the host and solid-state storage. For terms of use, trademark policy and other project policies please see https://lfprojects.org.

https://softwareenabledflash.org
https://github.com/softwareenabledflash
https://lfprojects.org

